322. Physical Properties and Chemical Constitution. Part XXXVIII.*

 The Electric Dipole Moments of Aminopyridines and Aminoquinolines.By C. W. N. Cumper, R. F. A. Ginman, D. G. Redford, and A. I. Vogel.
The electric dipole moments of the three aminopyridines and seven aminoquinolines have been determined by measuring the dielectric constants, specific volumes, and refractive indices of their solutions in pure benzene at $25 \cdot 00^{\circ}$. The apparent moment of the amino-group, which is at an angle to the plane of the heterocyclic ring, has been calculated for each compound and the values obtained are discussed. They show a considerable variation.

The electric dipole moments of monosubstituted pyridines and quinolines have already been discussed in this series; ${ }^{1-3}$ this communication extends the experimental data to amino-compounds. The amino-group has an appreciable mesomeric moment and differs from the substituents investigated previously in that its group moment is inclined at an angle to the plane of the heterocyclic ring. The group can rotate about the $\mathrm{C}-\mathrm{N}$ bond ${ }^{4}$ but the average group moment may be considered to lie in a plane perpendicular to that of the heterocyclic ring. 5 Investigations into the steric repression of mesomerism in amino-compounds 5,6 have demonstrated that the mesomeric moment can be large and would be expected to vary with the position of the substituent in the heterocyclic molecules. The interaction between group moments can also be large in amino-compounds. ${ }^{6,7}$

* Part XXXVII, J., 1962, 4525.
${ }^{1}$ Cumper, Vogel, and Walker, J., 1956, 3621; Cumper and Vogel, J., 1960, 4723.
${ }^{2}$ Cumper, Redford, and Vogel, $J ., 1962,1176,1183$.
${ }^{3}$ Cumper, Ginman, and Vogel, J., 1962, 1188.
${ }^{4}$ Grubb and Smyth, J. Amer. Chem. Soc., 1961, 88, 4873.
${ }^{5}$ Smith, J., 1961, 81.
${ }^{6}$ Smith and Walshaw, $J ., 1957,4527$.
${ }^{7}$ Le Fèvre and Smith, J., 1932, 2239.

Experimental and Results

The apparatus, experimental techniques, methods of calculation, and presentation of results are as described previously. ${ }^{2,3}$ The measured properties of the benzene solutions are presented in Table 1 and the polarisation data and dipole moments (μ) in Table 2. 4-Aminopyridine is only sparingly soluble in benzene so that in spite of measuring a greater number of

Table 1.

$100 w_{2}$	ε_{12}	v_{12}	n_{12}	$100 w_{2}$	ε_{12}	v_{12}	n_{12}
	Aniline			2-Aminopyridine			
$0 \cdot 1009$	$2 \cdot 2755$	$1 \cdot 14429$	1.49786	0.0926	$2 \cdot 2772$	$1 \cdot 14420$	1.49772
$0 \cdot 1285$	$2 \cdot 2761$	1-14423	$1 \cdot 49788$	$0 \cdot 4074$	$2 \cdot 2932$	$1 \cdot 14340$	1.49783
$0 \cdot 2747$	$2 \cdot 2804$	$1 \cdot 14399$	1.49808	0.4301	$2 \cdot 2947$	$1 \cdot 14333$	1.49784
0.5901	$2 \cdot 2901$	$1 \cdot 14348$	1.49832	$0 \cdot 6428$	$2 \cdot 3054$	$1 \cdot 14280$	1.49801
1.2037	$2 \cdot 3079$	$1 \cdot 14244$	1.49873	0.9783	$2 \cdot 3228$	$1 \cdot 14195$	1.49827
1.5612	$2 \cdot 3183$	$1 \cdot 14181$	$1 \cdot 49903$	1-2861	$2 \cdot 3390$	$1 \cdot 14117$	$1 \cdot 49862$
1.5751	$2 \cdot 3188$	$1 \cdot 14178$	1.49903	$1 \cdot 6971$	$2 \cdot 3606$	$1 \cdot 14009$	1.49898
3-A minopyridine							
0.0873	$2 \cdot 2832$	$1 \cdot 14423$	1.49787	4-Aminopyridine			
$0 \cdot 1614$	$2 \cdot 2917$	$1 \cdot 14400$	1.49806	0.00517	$2 \cdot 2731$		$1 \cdot 49773$
0.5773	$2 \cdot 3421$	$1 \cdot 14280$	1.49863	0.00517 0.00909	$2 \cdot 2738$	$1 \cdot 144440$	1.49776
$0 \cdot 7240$	$2 \cdot 3605$	$1 \cdot 14237$	1.49870	0.00909 0.01328	2.2742 2.2781	1.14437	1.49775
0.7264	$2 \cdot 3612$	1-14235	1.49870	0.02271	$2 \cdot 2762$	1.14435	1.49775
1.0458	2.3918	$1 \cdot 14147$	1.49901	0.02271 0.03504	$2 \cdot 2782$	$1 \cdot 14432$	1.49775
1.3261	$2 \cdot 4239$	1-14066	$1 \cdot 49923$	0.03720 0.03	$2 \cdot 2784$	$1 \cdot 14428$	1.49773
	2-Aminoquinoline			0.04523	$2 \cdot 2800$	$1 \cdot 14427$	1.49772
				0.05595	$0 \cdot 2823$	1-14427	1.49772
0.0593	$2 \cdot 2755$	$1 \cdot 14428$	1.49753	0.06209	$2 \cdot 2833$	$1 \cdot 14425$	$1 \cdot 49769$
$0 \cdot 1074$	$2 \cdot 2778$	$1 \cdot 14413$	1.49763				
$0 \cdot 1372$	$2 \cdot 2792$	$1 \cdot 14403$	1.49763				
$0 \cdot 1680$	$2 \cdot 2808$	1-14392	1.49771	3-Aminoquinoline			
0.2032	$2 \cdot 2817$	$1 \cdot 14379$	$1 \cdot 49780$				
$0 \cdot 2305$	$2 \cdot 2835$	$1 \cdot 14369$	1.49782	0.0595	$2 \cdot 2767$	1-14424	1.49769
$0 \cdot 2616$	$2 \cdot 2846$	1-14358	1.49788	$0 \cdot 1308$	$2 \cdot 2829$	$1 \cdot 14395$	1.49783
$0 \cdot 3020$	$2 \cdot 2865$	$1 \cdot 14349$	1.49791	$0 \cdot 3340$	$2 \cdot 2972$	$1 \cdot 14329$	$1 \cdot 49826$
$0 \cdot 3253$	$2 \cdot 2874$	1.14341	1.49793	0.4216	$2 \cdot 3046$	$1 \cdot 14303$	1.49836
$0 \cdot 3412$	$2 \cdot 2886$	$1 \cdot 14333$	$1 \cdot 49796$	0.5942	$2 \cdot 3167$	1-14240	1.49862
				1.0160	$2 \cdot 3486$	1-14094	1.49936
	4-Aminoquinoline			1-2435	$2 \cdot 3677$	$1 \cdot 14013$	$1 \cdot 49975$
0.0247	$2 \cdot 2759$	$1 \cdot 14437$	1.49743				
0.0463	$2 \cdot 2787$	$1 \cdot 14424$	$1 \cdot 49748$				
0.0763	2.2820	1.14399	1.49762	5-Aminoquinoline			
$0 \cdot 1136$	$2 \cdot 2865$	$1 \cdot 14407$	1.49761				
$0 \cdot 1342$	$2 \cdot 2900$	$1 \cdot 14398$	1.49760	0.1372	$2 \cdot 2854$	1-14399	1.49786
$0 \cdot 1595$	$2 \cdot 2921$	$1 \cdot 14390$	$1 \cdot 49763$	0.2349	$2 \cdot 2950$	1-14360	$1 \cdot 49807$
$0 \cdot 2086$	$2 \cdot 2986$	1-14371	$1 \cdot 49773$	$0 \cdot 3749$	$2 \cdot 3088$	1-14311	$1 \cdot 49824$
$0 \cdot 2383$	$2 \cdot 3030$	1.14359	$1 \cdot 49776$	0.5972	$2 \cdot 3310$	1.14235	1.49857
0.2800	$2 \cdot 3098$	1.14344	$1 \cdot 49782$	$0 \cdot 8510$	$2 \cdot 3558$	1.14155	1.49898
				1-1234	2-3848	1-14054	1.49962
6-Aminoquinoline				$1 \cdot 2831$	$2 \cdot 4019$	1-13996	1.49962
0.0836	$2 \cdot 2790$	1-14414	1.49773				
$0 \cdot 1470$	$2 \cdot 2842$	$1 \cdot 14392$	1.49773	7-Aminoquinoline			
$0 \cdot 2413$	$2 \cdot 2921$	$1 \cdot 14361$	1.49800				
$0 \cdot 3959$	$2 \cdot 3048$	$1 \cdot 14306$	1.49830	0.0982	$2 \cdot 2774$	1.14412	1-49771
0.4348	$2 \cdot 3087$	1-14295	1.49848	0.1816	$2 \cdot 2823$	1.14383	1.49779
0.7464	$2 \cdot 3346$	1.14188	1.49891	$0 \cdot 3503$	$2 \cdot 2931$	$1 \cdot 14323$	$1 \cdot 49818$
0.9088	2.3490	1-14131	$1 \cdot 49921$	0.3811	$2 \cdot 2938$	1.14315	1.49819
	8-Aminoquinoline			0.8283	$2 \cdot 3194$	$1 \cdot 14178$	$1 \cdot 49894$
				0.9934	$2 \cdot 3299$	$1 \cdot 14116$	$1 \cdot 49919$
$0 \cdot 1097$	$2 \cdot 2742$	1-14412	1.49785	$1 \cdot 1538$	2.3402	$1 \cdot 14075$	1.49944
0.2534	$2 \cdot 2761$	$1 \cdot 14360$	1.49807				
$0 \cdot 3252$	$2 \cdot 2776$	1-14333	$1 \cdot 49822$				
$0 \cdot 4213$	$2 \cdot 2789$	$1 \cdot 14306$	$1 \cdot 49840$				
$0 \cdot 4701$	$2 \cdot 2797$	$1 \cdot 14290$	$1 \cdot 49859$				
0.5946	$2 \cdot 2811$	$1 \cdot 14244$	$1 \cdot 49868$				
0.8314	$2 \cdot 2843$	$1 \cdot 14175$	$1 \cdot 49904$				

Compound	α	β	$\begin{aligned} & \text { TABL } \\ & \infty P_{2} \\ & \left(\mathrm{~cm} .{ }^{3}\right) \end{aligned}$	$\underset{\left(\mathrm{cm}_{\mathrm{D}}{ }^{3}\right)}{ }$	$\begin{gathered} { }_{\mathrm{o}}^{P} \\ \left(\mathrm{~cm} .{ }^{3}\right) \end{gathered}$	$\stackrel{\mu}{(\mathrm{D})}$	Previous values for $\mathrm{C}_{6} \mathrm{H}_{6}$ solns.
Aniline	$2 \cdot 93{ }_{2}$	$-0 \cdot 168{ }_{0}$	$77 \cdot 44$	$30 \cdot 63$	47.82	1.53	$1.51-1.54,{ }^{a} 1.53{ }^{\text {b }}$
2-Aminopyridine	$2 \cdot 36{ }_{3}$	-0.256_{8}	116.9	28.89	88.0	2.08	$2 \cdot 17,{ }^{\text {c }} 2 \cdot 06,{ }^{\text {d }} 2.04{ }^{\text {c }}$
3-Aminopyridine	11.44	$-0.285{ }_{4}$	226.6	29.50	$197 \cdot 1$	$3 \cdot 11$	$3 \cdot 19,{ }^{\text {c }} 3.12$ 。
4-Aminopyridine	$18.0{ }_{3}$	-0.388_{4}	$340 \cdot 4$	$30 \cdot 15$	$310 \cdot 2$	$3 \cdot 90$	$3 \cdot 79,{ }^{\text {c }} 3.97{ }^{\text {d }} 3.95{ }^{\text {e }}$
2 -Aminoquinoline	$4 \cdot 50{ }^{\text {9 }}$	-0.320_{2}	157.6	47.12	$110 \cdot 5$	2.33	
3-Aminoquinoline	$7 \cdot 47{ }_{7}$	-0.346_{2}	$237 \cdot 0$	47.99	189.0	$3 \cdot 04$	
4-Aminoquinoline	12.50	$-0.354{ }^{\text {c }}$	$272 \cdot 8$	47.04	$324 \cdot 8$	3.99	$3.97{ }^{\text {f }}$
5-Aminoquinoline	$10 \cdot 0_{4}$	-0.345_{3}	506.5	48.06	$254 \cdot 4$	$3 \cdot 56$	
6-Aminoquinoline	$8 \cdot 46_{1}$	$-0.347{ }_{0}$	$263 \cdot 7$	48.58	$215 \cdot 2$	$3 \cdot 24$	
7-Aminoquinoline	$5 \cdot 81{ }_{8}$	$-0.322{ }^{\text {c }}$	193.1	$48 \cdot 13$	144.9	$2 \cdot 66$	
8 -Aminoquinoline	$1.41{ }_{3}$	$-0.331{ }_{0}$	73.26	$48 \cdot 20$	25.06	1•11	

a Measurements prior to 1948 from Wesson " Tables of Electric Dipole Moments," Massachusetts Inst. Technol., 1948. ${ }^{b}$ Few and Smith, J., 1949, 753. ${ }^{\text {c Goethals, Rec. Trav. chim., 1935, 54, 299; }}$ Goethals and Wibaut, ibid., 1954, 73. 35. d Rogers, J. Phys. Chem., 1956, 60, 125. © Barassin and Lumbroso, Bull. Soc. chim. France, 1961, 492. ' Edgerley, quoted by Short, J., 1952, 4584.
solutions the moment we report for this molecule is of a lower accuracy than for the other amino-compounds. Aniline has been studied for purposes of comparison.

Preparation of Pure Compounds.-Each compound was extensively purified immediately before its dipole moment was determined. The infrared and ultraviolet spectra of these compounds, their m. p.s and also those of their derivatives were in good agreement with published data where available.

Aniline. A sample of AnalaR aniline (Hopkin and Williams) was fractionated, converted into its acetyl derivative and recrystallised from water to a constant m. p. of 114°; the regenerated aniline, fractionated twice, had b. p. $184 \cdot 5^{\circ} / 750 \mathrm{~mm} ., n_{\mathrm{D}}{ }^{20} 1 \cdot 58563, d_{4}{ }^{20} \mathrm{l} \cdot 0220$.

2-Aminopyridine. 2-Aminopyridine (Hopkin and Williams) was purified by recrystallising it from light petroleum (b. p. $40-60^{\circ}$) to a constant m. p. of 58.5°.

3-Aminopyridine. 3-Aminopyridine (Fluka) was purified by recrystallising it successively from chloroform and from benzene to a constant m. p. of 64.5°.

4-Aminopyridine. 4-Aminopyridine (Fluka) was purified by recrystallising it from a benzene-alcohol mixture to a constant m. p. of 159°.

2-Aminoquinoline. (i) Sodamide, from sodium (37.5 g .) and liquid ammonia (1 l.), was heated with xylene (300 ml .), and dry quinoline (100 ml .; b. p. $104^{\circ} / 12 \mathrm{~mm}$.) added during $1 \frac{1}{2} \mathrm{hr}$. The excess of sodamide was decomposed with water (500 ml .), and concentrated hydrochloric acid (100 ml .) was added to dissolve solids. The acid layer was made alkaline with sodium hydroxide, and the 2 -aminoquinoline extracted with ether. The extract was dried and the ether evaporated. The product (32 g.) was fractionally distilled (b. p. 182$183^{\circ} / 18 \mathrm{~mm}$.) and recrystallised from benzene to give plates (constant m. p. 129-130 $)$ (Found: $\mathrm{C}, 74 \cdot 8 ; \mathrm{H}, 5 \cdot 7 ; \mathrm{N}, 19 \cdot 9$. Calculated for $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{~N}_{2}: \mathrm{C}, 75 \cdot 0 ; \mathrm{H}, 5 \cdot 6 ; \mathrm{N}, 19 \cdot 4 \%$). The picrate had m. p. 266-267 ${ }^{\circ}$.
(ii) 2-Chloroquinoline ${ }^{2}$ (10 g .; b. p. $148^{\circ} / 15 \mathrm{~mm}$.) and phenol (55 g .) were refluxed and dry ammonia gas passed through the mixture for 12 hr . The 2 -aminoquinoline, isolated as detailed below under 4 -aminoquinoline, was dried in a vacuum desiccator and recrystallised from benzene to a constant m. p. of $129 \cdot 5-130 \cdot 5^{\circ}(3 \mathrm{~g}$.$) . The picrate had m. p. 266^{\circ}$.

3-Aminoquinoline. 3-Aminoquinoline (Eastman-Kodak) was recrystallised from benzene to give needles, constant m. p. $93 \cdot 5^{\circ}$.

4-Aminoquinoline. Backeberg and Marais's method ${ }^{8}$ was used in which 4-chloroquinoline ${ }^{2}$ (2.5 g ., b. p. $81^{\circ} / 0.5 \mathrm{~mm}$.) and phenol (10 g .) are refluxed on an oil bath and dry ammonia gas bubbled through the mixture. Water was added and the phenol removed by steam distillation. 4-Aminoquinoline was precipitated with sodium hydroxide and separated from ethanol as the monohydrate, m. p. $69-70^{\circ}(2 \cdot 1 \mathrm{~g}$.$) . After drying and recrystallisation from benzene, the$ anhydrous compound had m. p. 156-157 . The picrate softened at 274° and melted at 281°.

5 -Aminoquinoline. 5 -Nitroquinoline ${ }^{2}\left(8.6 \mathrm{~g} ., \mathrm{m} . \mathrm{p} .71^{\circ}\right)$ in ethanol (200 ml .) was reduced in a Towers low-pressure hydrogenator with 10% palladium on charcoal ($2.5 \mathrm{~g} ., 10 \% \mathrm{Pd}$) as catalyst. The solvent was removed and the residue crystallised successively from ethanol and from benzene to a constant m. p. (1.6 g.; 107.5-108.5) (Found: C, 75.3; H, 5.7; N, 19.2 . Calculated for $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{~N}_{2}$: C, $\mathbf{7 5 \cdot 0} ; \mathrm{H}, 5 \cdot 6 ; \mathrm{N}, 19 \cdot 4 \%$). The picrate had m. p. 218-219 ${ }^{\circ}$.
${ }^{8}$ Backeberg and Marais, J., 1942, 381.

1734 Cumper, Ginman, Redford, and Vogel: Physical Properties

6-Aminoquinoline. 6-Nitroquinoline ${ }^{2}$ (m. p. 152°) was reduced with tin and hydrochloric acid. Purification was by recrystallisation from benzene to yield deep yellow needles (m. p. 116°). Dilute solutions had a deep blue fluorescence.

7-Aminoquinoline. $\quad 7$-Nitroquinoline ${ }^{2}$ (m. p. 133°) in acetone was reduced in a hydrogenator using platinum oxide catalyst. The solution was filtered, the solvent removed, and the product recrystallised from benzene to give the monohydrate, m. p. 74 . After drying and recrystallisation from anhydrous benzene, the compound had m. p. $93-94^{\circ}$. The orange needles showed little fluorescence in solution. ${ }^{9}$ The picrate had m. p. 235-237 ${ }^{\circ}$.

8-Aminoquinoline. Dewar and Mole's method ${ }^{10}$ was employed in which 8 -nitroquinoline ${ }^{2}$ ($\mathrm{m} . \mathrm{p} .88-89^{\circ}$) in ethanol solution is reduced with hydrazine hydrate by using palladium on charcoal as catalyst. The 8 -aminoquinoline was recrystallised from ethanol to a constant $\mathrm{m} . \mathrm{p} .\left(64-65^{\circ}\right)$. The light yellow needles formed an orange picrate [m. p. $204-205^{\circ}$ (decomp.)].

Discussion

It has been suggested that part of the 2 - and the 4 -aminopyridine might exist in an imino-form in solution. Evidence from measurements of dipole moments, basicities, and infrared spectra ${ }^{11-13}$ however indicates that this is unlikely. In 8 -aminoquinoline the amino-hydrogen atoms probably do interact with the heterocyclic nitrogen atom, but only the amino-form is considered to contribute to the dipole moment of the other compounds studied.

The geometrical structure of pyridine is well established ${ }^{14}$ and that of quinoline was discussed in an earlier paper. ${ }^{2}$ The amino-substituent can normally rotate about the $\mathrm{N}-\mathrm{C}$ bond ${ }^{4}$ but there is a tendency for the conformation in which the amino-group is as nearly coplanar as possible with the ring to predominate because in this position the interaction between the lone pair electrons on the nitrogen atom and the π-electrons in the ring is a maximum. The direction of the amino-group moment is consequently inclined to the plane of the heterocyclic ring. Smith, ${ }^{5}$ who analysed the dipole moments of several amines, concluded that an amino-group attached to a benzene ring has an apparent moment of 1.53 D inclined at an angle of 48.5° to the plane of the aromatic ring; the component moment perpendicular to the ring being $1 \cdot 15 \mathrm{D}$ and that along the $\mathrm{N}-\mathrm{C}$ bond 1.01 D . A substantial contribution towards the dipole moment arises through conjugation between the amino-group and the ring-Smith suggests that this mesomeric moment might be 1.67 D in aniline. This mesomeric moment will be somewhat different in aminopyridines and aminoquinolines which will consequently have slightly different values for the angle and component moments quoted above.

The apparent moments of the amino-group, relative to that of a $\mathrm{C}-\mathrm{H}\left(i . e ., \mu_{\mathrm{C}-\mathrm{NH}_{\mathrm{a}}}-\mu_{\mathrm{C}-\mathrm{H}}\right)$ bond and not corrected for any effect of the solvent, are listed in Table 3 for the molecules under discussion. These have been obtained by vector analysis of the dipole moments, taking those of pyridine and quinoline to be $2 \cdot 21 \mathrm{D}^{1}$ and $2 \cdot 15 \mathrm{D}^{2}$ (taken to be in the $\mathrm{C}_{4}-\mathrm{N}$ direction) respectively in benzene solution, and for the conformation in which a line passing through the amino-hydrogen atoms is parallel to the ring.*

The values listed under μ_{1} were calculated on the assumption that the component of the group moment perpendicular to the plane of the ring is 1.15 D , and for μ_{2} that the group moment is inclined at 48.5° to the plane of the ring, as discussed above for aniline.

Neither assumption can be strictly correct and the actual group moments probably lie

[^0]
between μ_{1} and μ_{2}; the relative order of the group moments for 2 - and 4 -aminoquinoline is reversed in the two series. No allowance has been made for any difference in the solvent effect with the various isomers.

There are several reasons why the group moment of a substituent is not constant in the compounds investigated; some of these were discussed in Part XXXIII. ${ }^{2}$ The dipole moment of α-naphthylamine ${ }^{5}(1.50 \mathrm{D})$ is only slightly lower than that of aniline (1.53 D) but β-naphthylamine ${ }^{15}(1.77 \mathrm{D})$ possesses a substantially greater moment arising from an enhanced mesomeric moment and a polarisation of the unsubstituted ring. The aminogroup moments in $2-, 3-, 6-$, and 7 -aminoquinoline would be increased for the same reasons. The extent of conjugation, and with it the mesomeric moment, also varies between the isomers. Infrared spectral studies ${ }^{13}$ for example indicate that conjugation in the aminopyridines increases in the order $3<2<4$. The substituent reduces the electronegativity of the carbon atom to which it is attached and this lowers the apparent group moment for the 2 - and the 7 -position in quinoline, increases it for the 3 - and the 6 -position and increases it still further for the 4 -, 5 -, and 8 -isomers. ${ }^{2}$ Another important factor is the π-electron charge on the substituted carbon atom of the parent molecule; one estimate of these charges ${ }^{3}$ is given in Table 3. The relatively high charges on carbon-2 and carbon-4 in particular would increase the amino-group moment in these positions. Finally the primary moment of the heterocyclic molecule, located near its nitrogen atom, ${ }^{16}$ will polarise the amino-substituent; this is greatest for 2 -aminopyridine and 2 - and 8 -aminoquinoline where it lowers the group moments.

The relative order of the amino-group moment in the compounds investigated is consequently difficult to predict since it is determined by several factors. Similar factors affect the basic strength of these compounds and there seems to be a rough correlation for most of the compounds between the $\mathrm{p} K_{a}$ values ${ }^{12}$ of these compounds in water and the amino-group moments (Table 3). The $\mathrm{p} K_{a}$ values also depend upon the nature of the protonated molecules so this comparison is not completely valid, particularly for 2 -aminopyridine and 2 - and 8 -aminoquinoline.

The group moment in 7 -aminoquinoline and its $\mathrm{p} K_{a}$ value are unexpectedly great; it is interesting that the methyl-group moment in 7-methylquinoline is also greatly different from that in the other methylquinolines. ${ }^{2}$ No group moment can be calculated for 8 -aminoquinoline because of the interaction between an amino-hydrogen atom and the lone-pair electrons of the heterocyclic nitrogen atom. This interaction, which is confirmed by analysis of the infrared spectra, ${ }^{17}$ would alter the magnitude and direction of the resultant dipole moment in this molecule.

The authors thank Imperial Chemical Industries Limited for a grant.
[Received, July 18th, 1962.]
${ }^{15}$ Wassiliew and Syrkin, Acta Physicochim. U.R.S.S., 1941, 14, 414; J. Phys. Chem., U.S.S.R., 1941, 15, 254.
${ }^{16}$ Brown and Heffernan, Austral. J. Chem., 1957, 10, 493; Cumper, Chem. and Ind., 1958, 1628.
1: Short, J., 1952, 4584.

[^0]: * The same group moments would be obtained if instead of this fixed conformation there was completely free rotation about the $\mathrm{C}-\mathrm{N}$ bond.
 ${ }^{9}$ Hamer, J., 1921, 119, 1432.
 ${ }^{10}$ Dewar and Mole, $J ., 1956,2556$.
 ${ }^{11}$ Lies and Curran, J. Amer. Chem. Soc., 1945, 67, 79; Angyal and Angyal, J., 1952, 1461.
 ${ }^{12}$ Albert, Goldacre, and Phillips, J., 1948, 2240; see also McDaniel and Brown, J. Amer. Chem. Soc., 1955, '7'7, 3756.

 13 Angyal and Werner, $J ., 1952,2911$; Goulden, J., 1952, 2939.
 14 Bak, Hansen-Nygaard and Rastrup-Andersen, Mol. Spectroscopy, 1958, 2, 361; cf. Cumper, Trans. Faraday Soc., 1958, 54, 1266.

